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Abstract. Reduction of some classes of global optimization programs to bilinear programs may
be done in various ways, and the choice of method clearly influences the ease of solution of the
resulting problem. In this note we show how linear equality constraints may be used together with
graph theoretic tools to reduce a bilinear program, i.e., eliminate variables from quadratic terms to
minimize the number of complicating variables. The method is illustrated on an example. Computer
results are reported on known test problems.
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1. Introduction

A quadratic program, in its most general form, may be written as follows:

Problem (Q)




min
n∑

i=1

n∑
j=i

qij xixj +
n∑
i=1

qixi + q0

subject to:
n∑
i=1

n∑
j=i

rkij xixj +
n∑

i=1

rki xi + rk0 � 0 k = 1, 2, . . . , 


xj ∈ R j = 1, 2, . . . , n

where the coefficients qij , qi, q0, r
k
ij , r

k
i , r

k
0 (i, j = 1, 2, . . . , n; j � i; k =

1, 2, . . . , 
) are real numbers. No assumptions are made on convexity or concavity
of the objective function or of the constraints. The constraints possibly include
nonnegativity and/or range constraints. Without loss of generality, some of the
constraints of (Q) may be assumed to be equalities and/or linear.
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Floudas et al. [10] reduced (Q) to a general bilinear program (B) by duplica-
tion of variables. Bilinear programs may be written as follows:

Problem (B)




min
n∑

i=1

p∑
j=1

cij xiyj +
n∑

i=1

c′
ixi +

p∑
i=1

c′′
i yi + c0

subject to:
n∑

i=1

p∑
j=1

akij xiyj +
n∑

i=1

a
′k
i xi +

p∑
i=1

a
′′k
i yi + ako � 0 k = 1, 2, . . . , 


xi ∈ R i = 1, 2, . . . , n

yi ∈ R i = 1, 2, . . . , p

where the coefficients cij , c
′
i , c

′′
j , c0, a

k
ij , a

′k
i , a

′′k
j , ak0 (i = 1, 2, . . . , n; j =

1, 2, . . . , p; k = 1, 2, . . . , 
) are real numbers. Again the constraints may include
nonnegativity and/or range ones, as well as (linear) equalities. When any one set of
variables is fixed (the xi or the yi), a linear program is obtained.

Many algorithms have been suggested for solving problems (Q) and (B). Non-
convex quadratic programming is surveyed in the landmark book of Horst and
Tuy [20] on Global Optimization, in the Introduction to Global Optimization of
Horst et al. [18], in the new book of Floudas Deterministic Global Optimization
[8] and in the chapter on Quadratic Optimization by Floudas and Visweswaran
[14] in the Handbook of Global Optimization edited by Horst and Pardalos [17].
Recent algorithms for problem (Q) include simplicial branch-and-bound ones due
to Horst and Thoai [19] and Raber [24], duality bound methods of Ben-Tal et al.
[6] and Thoai [29], a relaxation method of Al-Khayyal et al. [2], reformulation-
linearization techniques of Sherali and Tuncbilek [27, 28] and a branch-and-cut
algorithm of Audet et al. [5]. Kojima and Tuncel [21] present successive convex
relaxation methods based on semidefinite and semi-infinite linear programming.
Further references may be found in these books and papers.

Bilinear programming is discussed in the books and chapters cited above, as
well as in a survey of Al-Khayyal [1] and the book of Konno et al. [22] on Optim-
ization on low rank nonconvex structures and the recent paper of Audet et al. [4].
Problem (Q) can be solved with the algorithm proposed for problem (B) or, more
efficiently by algorithms exploiting its particular structure. There include a primal-
relaxed dual approach of Floudas and Visweswaran [12, 13] close to generalized
Benders decomposition [15, 25, 30]), a relaxation-linearization method of Sherali
and Alameddine [26] and a projection and branch-and-bound algorithm of Quesada
and Grossmann [23].

It is well known that mathematical programs can often be written in different
forms, which yield the same optimal solution, but which may vary considerably in
the difficulty of their resolution. A good example is a recent study by Audet et al.
[3] of the pooling problem, a bilinear program arising in the oil industry. Two for-
mulations, based on flows and proportions are presented there. For large instances,
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resolution time with the algorithm of [5] is of over 1 h for one formulation and a
few tens of seconds for the other.

So when reformulating a quadratic program as a bilinear one, one should aim at
an easy to solve formulation. Difficulty of resolution appears to increase with the
number of complicating variables, i.e., variables in the smallest of the two sets and
with the number of bilinear terms.

Let us recall some definitions. Let G = (V ,E) denote a graph with vertex set
V = {v1, v2, . . . , vn} and edge set E. A set S ⊆ V of vertices is a stable (or
independent) set if any two vertices in S are not adjacent. A set T ⊆ V of vertices
is a transversal (or vertex cover) if any edge of E contains at least one vertex of
T . The complement in V of a stable set S of G is a transversal T of G. A graph G

is bipartite if its vertex set V can be partitioned into two sets V1 and V2 such that
any edge of E joins a vertex of V1 to a vertex of V2. The co-occurrence graph G

of problem (Q) has vertices associated with the variables of the quadratic program
and edges joining vertices associated with variables appearing jointly in one term
of the objective function or constraints. The co-occurrence graph of problem (B) is
bipartite.

Hansen and Jaumard [16] have proven that any transversal Ti of the co-occur-
rence graph G allows reformulation of (Q) to a bilinear program (Bi), with a num-
ber |Ti| of complicating variables. Then a minimum set of complicating variables
corresponds to a minimum transversal of the co-occurrence graph (mini{|Ti|}).

In this note we show how linear equality constraints can be used to eliminate
variables and reduce more the bilinear program. Making such constraints explicit
(Q) can be written:

Problem (Q′)




min
n∑
i=1

n∑
j=i

qij xixj +
n∑

i=1

qixi + q0

subject to:
n∑

i=1

n∑
j=i

rkij xixj +
n∑

i=1

rki xi + rk0 � 0 k = 1, 2, . . . , 


n∑
j=1

aij xj = bi i = 1, . . . , m

xj ∈ R j = 1, 2, . . . , n

where aij and bi (i = 1, . . . , m, j = 1, . . . , n) are real numbers. When reformulat-
ing (Q′) as a bilinear program, the minimum number of complicating variables is
found as mini{|Ti| −µi} (instead of mini{|Ti|}), where µi is the maximum number
of linearly independent equations with all variables from Ti . An algorithm that uses
Gaussian partial pivoting to provide eliminations and substitutions is described.
Computer results are reported on known test examples.
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2. Exploiting linear equality constraints

Let us denote by G = (V ,E) the co-occurrence graph of quadratic program (Q)
or (Q′), with Ti being any (minimal) transversal of G, and with βi(G) = |Ti|, the
cardinality of set Ti , i = 1, . . . , r, where r is the total number of transversals of
G. Since Ti is a (minimal) transversal set, quadratic program (Q) has a reduction
to a bilinear program (Bi) with βi = βi(G) complicating variables (Theorem 2 in
[16]). Let us denote by Gi = (Vi, Ei), i = 1, . . . , r, the co-occurrence graphs of
the associated bilinear programs. The following holds:

PROPOSITION 1. The number of complicating variables βi of bilinear program
(Bi) with co-occurrence graph Gi = (Vi, Ei) can be reduced by one if there is
one linear equation with not all zero coefficients, whose vertices (associated with
variables) all belong to Ti .

Proof. Since Gi is obtained by a reduction of (Q), its vertex set is partitioned
into two sets Ti and Si such that any edge of Ei joins a vertex of Ti to a vertex
of Si , i.e., Gi is bipartite. Without loss of generality, let us suppose that Ti =
{v1, . . . , vβ}, and (a1 �= 0) x1 = b − a2x2 − · · · − aβxβ. Let T ′

i = Ti \ {v1}, V ′
i =

T ′
i ∪ Si , and G′

i = (V ′
i , E

′
i ). It is sufficient to prove that the set T ′

i = Ti \ {v1} is
a transversal of co-occurrence graph G′

i , obtained after elimination of variable x1

from bilinear program (Bi), i.e., after deleting vertex v1 from Ti and after substitut-
ing x1 in all bilinear terms where it appears. Then the result, |T ′

i | = |Ti |−1 = βi−1,
holds. In fact, since Gi is bipartite, substituting x1 into any bilinear term where it
appears gives:

yαx1 = byα −
β∑

j=2

ajxjyα, yα ∈ Si.

It is now obvious that all possible new edges of G′
i (associated with xjyα) will join

a vertex of T ′
i to a vertex of Si . In other words, there is no new edge with both

extremities belonging to Si . Thus, G′
i is bipartite and T ′

i is (one of) its (minimal)
transversal(s). �

The extension of this result is given in the following proposition.

PROPOSITION 2. The number of complicating variables βi of bilinear program
(Bi) with co-occurrence graph Gi = ((Ti, Si), Ei), can be reduced by µi , if there
are µi linearly independent equations, whose vertices (associated with variables)
all belong to Ti .

Proof. µi = 1 is proved in Proposition 1. The result then follows by induc-
tion. �

From the previous Propositions it appears that using linear equations, Ax =
b, to find the minimum number of complicating variables of the given bilinear



REDUCTION OF QUADRATIC AND BILINEAR PROGRAMS 43

programs Bi with bipartition Ti and Si (|Ti | � |Si|), i = 1, . . . , r, is tantamount to
finding the maximum number of linearly independent equations with all variables
from the smallest of the two sets (Ti). That fact is given in the following Theorem.

THEOREM 1. A quadratic program (Q′) with co-occurrence graph G, its r trans-
versals Ti and βi = |Ti |(i = 1, . . . , r), has a reduction to a bilinear program (B ′)
with mini {βi − µi} complicating variables, where µi is the maximum number of
linearly independent equations with all indices from Ti .

We shall now explain how to compute µi for every transversal Ti, i = 1, . . . , r.
Let us interchange the columns of the linear system Ax = b, to get

[Ai
1 A

i
2] ·

[
xi

yi

]
= b,

where Ai
1 and Ai

2 are sub-matrices of A whose columns belong to index sets Si
and Ti , respectively. If the submatrix Ai

1 has full row rank m, then it is not possible
to derive equations with variables from Ti only, i.e., the linear equality constraints
cannot be used in reducing the number of complicating variables. Let us assume
that ρi = rank(Ai

1) < m. Then, by using any linear system solution method (for
instance the Gauss method), we get the partition

[
Ai

11 Ai
12

0 Ai
22

]
·
[
xi

yi

]
=

[
bi1
bi2

]
,

where Ai
11 is an upper triangular ρi × (n − βi) matrix, Ai

12 is ρi × βi , and Ai
22 is

(m − ρi) × βi . Thus, we have µi = rank(Ai
22).

Let us assume that i∗ is found such that βi∗ − µi∗ = mini{βi − µi}, and let
β = βi∗ , µ = µi∗ . We have the system Ax = b (obtained after transformations)
corresponding to bipartition Ti∗ and Si∗ as

[
A11 A12

0 A22

]
·
[
x

y

]
=

[
b1

b2

]
.

With this best among r minimal transversals, we now have to eliminate µ variables
from the system A22y = b2. The last system can be again transformed into A′

22y
′ +

A′′
22y

′′ = b′
2, i.e.,


 A11 A′

12 A′′
12

0 A′
22 A′′

22
0 0 0


 ·


 x

y′
y′′


 =


 b1

b′
2

0


 .

where A′
22 is an upper triangular µ × µ matrix. The solution of the last triangular

system

y′ = A′ − 122(b
′
2 − A′′

22y
′′) (1)
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Figure 1. Co-occurrence graph, G.

can be substituted in

A11x + A′
12y

′ + A′′
12y

′′ = b1. (2)

Thus we obtain the new set of linear constraints as

A11x + (A′′
12 − A′

12A
′−1
22 A′′

22)y
′′ = b1 − A′

12A
′−1
22 b′

2. (3)

The programming aspects are described in detail in the Appendix to the first
version of this note [7]. The following example illustrates the process.
EXAMPLE. Consider the following illustrative problem:

min f (x) = (x1 + x3 + x5)(x2 + x4 + x6) + x3x5

subject to

3x1 + 2x2 + 4x3 + 2x4 + x5 + 4x6 = 9

4x1 + 2x2 + x3 + 3x4 + x5 + 2x6 = 9

2x1 + 4x2 + 7x3 + 4x4 + 3x5 + 8x6 = 18.

The co-occurrence graph is shown in Figure 1. Note that all six variables ap-
pear in nonlinear terms, of which there are a total of 10. The analysis for two
transversals, {v1, v3, v5} and {v2, v4, v5, v6} is now summarized using the notation
and procedure identified above.
(1) T1 = {v1, v3, v5}:

A1
1 =


 2 2 4

2 3 2
4 4 8


 , A1

2 =

 3 4 1

4 1 1
2 7 3


 , b =


 9

9
18


 .

After transformations, we obtain

[
A1

1 A
1
2

] =

 1 1 2 1.5 2 0.5

0 1 −2 1 −3 0
0 0 0 −4 −1 1


 ,

so that the rank of A1
1, ρ1 = 2, the rank of A1

22, µ1 = 1, and the number of
complicating variables becomes

z1 = β1 − µ1 = 3 − 1 = 2.
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(2) T2 = {v2, v4, v5, v6}:

A2
1 =


 3 4

4 1
2 7


 , A2

2 =

 2 2 1 4

2 3 1 2
4 4 3 8


 ;

readily, we obtain ρ2 = 2, µ2 = 1, so that the number of complicating variables
becomes

z2 = β2 − µ2 = 4 − 1 = 3.

Enumeration of the transversals ofG shows that mini{βi−µi} = 2 (i∗ = 1); that
is, the minimum number of complicating variables is 2. Letting y1 = x1, y2 = x3,
y3 = x5, solving y1 = −0.25y2 + 0.25y3, and substituting leads to the following
equivalent reduced bilinear program:

min(0.75y2 + 1.25y3)(x2 + x4 + x6) + y2x7

subject to
x2 + x4 + 2x6 + 1.625y2 + 0.875y3 = 4.5

x4 − 2x6 − 3.25y2 + 0.25y3 = 0

x7 − y3 = 0.

Note that although the number of complicating variables cannot be reduced
further, it may be possible to further simplify the problem. Consider the final form
of the linear equality constraints in (3). If the coefficients of y′′ are all zeros in any
row, we can use that equation to eliminate a noncomplicating variable. This may in
turn reduce the number of bilinear terms.

3. Computational results and conclusions

The reduction procedure was tested on several well-known problems from Floudas
and Pardalos [11]. The results are summarized in Table 1. Column 1 gives the
problem identification in [11]; the next two columns give the number of rows, m,
and number of columns (variables), n, in the set of linear equality constraints (in
all cases, n also equals the number of nodes in the co-occurrence graph); this is
followed, respectively, by the number of edges (|E|) in the co-occurrence graph,
the total number of minimal transversals (r), the number of complicating variables
before reduction (β) and the number eliminated (µ), and finally the CPU time (s)
to find the ‘best’ reduction. We see from the table that a substantial reduction is
obtained in most of the problems investigated. It also appears that the number of
minimal transversals is highly variable from problem to problem and may be quite
large. In such a case, it is preferable (or imposed by time limit) to enumerate only
some of them.
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Table 1. Computational Results on Sun Sparc 10 Station.

Pr. # m n |E| r β µ CPU time

12.2 5 12 6 48 6 3 0.05

5.2 13 48 44 400 18 6 9.89

5.4 17 38 36 64 14 10 1.63

5.6 22 110 96 512000 31 6 1067.12

7.2 17 42 26 1296 12 1 29.08

9.2 22 76 95 480 18 5 36.43

9.3 17 71 90 480 18 5 33.39

9.6 12 48 52 3744 16 0 50.07

10.2 41 102 78 103680 22 1 23247.80

To conclude, this note investigates the use of linear equality constraints to re-
duce general quadratic programs by eliminating complicating variables in the equiv-
alent bilinear form. Significant reduction is obtained on several test problems from
the literature. Future work will examine the properties of nonlinear equality con-
straints in the reduction process.
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7. Brimberg, J., Hansen, P. and Mladenović, N. (2001), Reduction and Reformulation of Quadratic
Programs with Equality Constraints, Les Cahiers du GERAD, G–2001–16.

8. Floudas, C.A. (2000), Deterministic Global Optimization. Theory, Methods and Applications,
Kluwer, Dordrecht.

9. Floudas,C.A. and Aggarwal, A. (1990), A decomposition Strategy for Global Optimum Search
in the Pooling Problem, ORSA Journal on Computing 2: 225–235.

10. Floudas, C.A., Aggarwal, A. and Ciric, A.R. (1989), Global optimum search for nonconvex
NLP and MINLP problems, Computers and Chemical Engineering 13: 1117–1132.

11. Floudas,C.A. and Pardalos, P.M. (1990), A Collection of Test Problems for Constrained Global
Optimization Algorithms, Springer, Berlin Heidelberg.



REDUCTION OF QUADRATIC AND BILINEAR PROGRAMS 47

12. Floudas, C.A. and Visweswaran, V. (1990), A Global Optimization Algorithm (GOP) for
Certain Classes of Nonconvex NLPs - I. Theory, Computers and Chemical Engineering 14:
1397–1417.

13. Floudas, C.A. and Visweswaran, V. (1993), A Primal-Relaxed Dual Optimization Approach,
Journal of Optimization Theory and Applications 2: 187–225.

14. Floudas, C.A. and Visweswaran, V. (1995), Quadratic Optimization, in Handbook of Global
Optimization: 217–269, Edited by Horst, R. and Pardalos, P., Kluwer, Dordrecht.

15. Geoffrion, A.M. (1972), Generalized Benders Decomposition, Journal of Optimization Theory
and Applications 10: 237–260.

16. Hansen, P. and Jaumard, B. (1992), Reduction of Indefinite Quadratic Programs to Bilinear
Programs, Journal of Global Optimization 2: 41–60.

17. Horst, R. and Pardalos, P.M. (eds.) (1995), Handbook of Global Optimization, Kluwer
Academic Publishers, Dordrecht.

18. Horst, R., Pardalos, P.M. and Thoai, N.V. (1995), Introduction to Global Optimization, Kluwer,
Dordrecht.

19. Horst, R. and Thoai, N.V. (1996), A New Algorithm for Solving the General Quadratic
Programming Problem, Computational Optimization and Applications 5: 39–48.

20. Horst, R. and Tuy, H. (1996), Global Optimization: Deterministic Approaches, 3rd edition,
Springer, Berlin.

21. Kojima, M. and Tuncel, L. (2000), Discretization and localization in successive convex
relaxation methods for nonconvex quadratic optimization, Mathematical Programming 89:
79–111.

22. Konno, H., Thach, P.T. and Tuy, H. (1997), Optimization on Low Rank Nonconvex Structures,
Kluwer Academic Publishers, Dordrecht.

23. Quesada, I. and Grossmann, I.E. (1995), A global optimization algorithm for linear fractional
and bilinear programs, Journal of Global Optimization 6: 39–76.

24. Raber, U. (1998), A Simplicial Branch-and-Bound Method for Solving Nonconvex All-
Quadratic Programs, Journal of Global Optimization 13: 417–432.

25. Simões, L.M. (1987), Search for the Global Optimum of Least Volume Trusses, Engineering
Optimization 11: 49–67.

26. Sherali, H.D. and Alameddine, A. (1992), A new reformulation-linearization technique for
bilinear programming problems, Journal of Global Optimization 2: 379—410.

27. Sherali, H.D. and Tuncbilek, C.H. (1995), A reformulation-convexification approach for
solving nonconvex quadratic programming problems, Journal of Global Optimization 7: 1–31.

28. Sherali, H.D. and Tuncbilek, C.H. (1997), New reformulation linearization/convexification
relaxations for univariate and multivariate polynomial programming problems, Operations
Research Letters 21: 1–9.

29. Thoai, N.V. (2000), Duality bound method for the general quadratic programming problem
with quadratic constraints, Journal of Optimization Theory and Applications 107: 331–354.

30. Wolsey, L.A. (1981), A Resource Decomposition Algorithm for General Mathematical Pro-
grams, Mathematical Programming Study 14: 244–257.


